Issue 30, 2022

Temperature-responsive Pickering high internal phase emulsions for recyclable efficient interfacial biocatalysis

Abstract

The field of biocatalysis is expanding owing to the increasing demand for efficient low-cost green chemical processes. However, a feasible strategy for achieving product separation, enzyme recovery, and high catalytic efficiency in biocatalysis remains elusive. Herein, we present thermoresponsive Pickering high internal phase emulsions (HIPEs) as controllable scaffolds for efficient biocatalysis; these HIPEs demonstrate a transition between emulsification and demulsification depending on temperature. Ultra-high-surface-area Pickering HIPEs were stabilized by Candida antarctica lipase B immobilized on starch particles modified with butyl glycidyl ether and glycidyl trimethyl ammonium chloride, thus simplifying the separation and reuse processes and significantly improving the catalytic efficiency. In addition, the switching temperature can be precisely tuned by adjusting the degree of substitution of the modified starches to meet the temperature demands of various enzymes. We believe that this system provides a green platform for various interfacial biocatalytic processes of industrial interest.

Graphical abstract: Temperature-responsive Pickering high internal phase emulsions for recyclable efficient interfacial biocatalysis

Supplementary files

Article information

Article type
Edge Article
Submitted
26 Mar 2022
Accepted
06 Jun 2022
First published
10 Jun 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 8766-8772

Temperature-responsive Pickering high internal phase emulsions for recyclable efficient interfacial biocatalysis

C. Wang, H. Chi, F. Zhang, X. Wang, J. Wang, H. Zhang, Y. Liu, X. Huang, Y. Bai, K. Xu and P. Wang, Chem. Sci., 2022, 13, 8766 DOI: 10.1039/D2SC01746F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements