An induced-fit model for asymmetric organocatalytic reactions: a case study of the activation of olefins via chiral Brønsted acid catalysts†
Abstract
We elucidate the stereo-controlling factors of the asymmetric intramolecular hydroalkoxylation of terminal olefins catalyzed by bulky Brønsted acids [Science2018, 359 (6383), 1501–1505] using high-level electronic structure methods. The catalyst–substrate interaction is described using a dispersion-driven induced-fit model, in which the conformational changes of the catalyst and of the substrate in the transition states are governed to a large extent by London dispersion forces. The distortion energy of the catalyst is dominated by the change in the intramolecular dispersion interactions, while intermolecular catalyst–substrate dispersion interactions are the major stabilizing contribution in the transition state. This model provides a new general framework in which to discuss the stereoselectivity of transformations catalyzed by such confined organocatalysts.