Issue 27, 2022

Steam-assisted crystallization of highly dispersed nanosized hierarchical zeolites from solid raw materials and their catalytic performance in lactide production

Abstract

A solvent-free route based on solid raw materials affords higher product yield and lower waste production compared to the traditional hydrothermal synthesis. However, the as-made zeolites usually present blocky aggregation states, limiting their mass transfer and exposure of active sites in catalytic applications. Herein, highly dispersed nanosized hierarchical Beta zeolites with varied Si/Al ratios were prepared via steam-assisted crystallization from ball-milled solid raw materials. Thanks to the sufficient mixing of solid raw materials and favorable migration of solid mixture, nanosized Beta zeolites are obtained that are assembled from nanoparticles (∼15 nm) and possess abundant interconnected intraparticle mesopores. The strategy can also be extended to synthesize nanosized hierarchical ZSM-5 zeolites. The as-prepared Beta zeolite (Si/Al = 10) exhibits outstanding catalytic performance in conversion of lactic acid to lactide (as high as 77.5% in yield). This work provides avenues for simple and cost-efficient synthesis of highly dispersed nanosized hierarchical zeolites, promising their important catalytic applications.

Graphical abstract: Steam-assisted crystallization of highly dispersed nanosized hierarchical zeolites from solid raw materials and their catalytic performance in lactide production

Supplementary files

Article information

Article type
Edge Article
Submitted
20 May 2022
Accepted
20 Jun 2022
First published
21 Jun 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 8052-8059

Steam-assisted crystallization of highly dispersed nanosized hierarchical zeolites from solid raw materials and their catalytic performance in lactide production

Z. Ma, Q. Zhang, L. Li, M. Chen, J. Li and J. Yu, Chem. Sci., 2022, 13, 8052 DOI: 10.1039/D2SC02823A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements