Issue 48, 2022

Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution

Abstract

Exploring the structural evolution of clusters with similar sizes and atom numbers induced by the removal or addition of a few atoms contributes to a deep understanding of structure–property relationships. Herein, three well-characterized copper-hydride nanoclusters that provide insight into the surface-vacancy-defect to non-defect structural evolution were reported. A surface-defective copper hydride nanocluster [Cu28(S-c-C6H11)18(PPh2Py)3H8]2+ (Cu28-PPh2Py for short) with only one C1 symmetry axis was synthesized using a one-pot method under mild conditions, and its structure was determined. Through ligand regulation, a 29th copper atom was inserted into the surface vacancy site to give two non-defective copper hydride nanoclusters, namely [Cu29(SAdm)15Cl3(P(Ph-Cl)3)4H10]+ (Cu29-P(Ph-Cl)3 for short) with one C3 symmetry axis and (Cu29(S-c-C6H11)18(P(Ph-pMe)3)4H10)+ (Cu29-P(Ph-Me)3 for short) with four C3 symmetry axes. The optimized structures show that the 10 hydrides cap four triangular and all six square-planar structures of the cuboctahedral Cu13 core of Cu29-P(Ph-Me)3, while the 10 hydrides cap four triangular and six square-planar structures of the anti-cuboctahedral Cu13 core of Cu29-P(Ph-Cl)3, with the eight hydrides in Cu28-PPh2Py capping four triangular and four square planar-structures of its anti-cuboctahedral Cu13 core. Cluster stability was found to increase sequentially from Cu28-PPh2Py to Cu29-P(Ph-Cl)3 and then to Cu29-P(Ph-Me)3, which indicates that stability is affected by the overall structure of the cluster. Structural adjustments to the metal core, shell, and core–shell bonding model, in moving from Cu28-PPh2Py to Cu29-P(Ph-Cl)3 and then to Cu29-P(Ph-Me)3, enable the structural evolution and mechanism responsible for their physicochemical properties to be understood and provide valuable insight into the structures of surface vacancies in copper nanoclusters and structure–property relationships.

Graphical abstract: Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution

Supplementary files

Article information

Article type
Edge Article
Submitted
09 Jun 2022
Accepted
20 Nov 2022
First published
21 Nov 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 14357-14365

Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution

Y. Bao, X. Wu, B. Yin, X. Kang, Z. Lin, H. Deng, H. Yu, S. Jin, S. Chen and M. Zhu, Chem. Sci., 2022, 13, 14357 DOI: 10.1039/D2SC03239B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements