Issue 29, 2022

A bis(silylene)pyridine pincer ligand can stabilize mononuclear manganese(0) complexes: facile access to isolable analogues of the elusive d7-Mn(CO)5 radical

Abstract

Using the potentially tridentate N,N′-bis(N-heterocyclic silylene)pyridine [SiNSi] pincer-type ligand, 2,6-N,N′-diethyl-bis[N,N′-di-tert-butyl(phenylamidinato)silylene] diaminopyridine, led to the first isolable bis(silylene)pyridine-stabilized manganese(0) complex, {κ3-[SiNSi]Mn(dmpe)} 4 (dmpe = (Me2P)2C2H4), which represents an isolobal 17 VE analogue of the elusive Mn(CO)5 radical. The compound is accessible through the reductive dehalogenation of the corresponding dihalido (SiNSi)Mn(II) complexes 1 (Cl) and 2 (Br) with potassium graphite. Exposing 4 towards the stronger π-acceptor ligands CO and 2,6-dimethylphenyl isocyanide afforded the related Mn(0) complexes κ2-[SiNSi]Mn(CO)3 (5) and κ3-[SiNSi]Mn(CNXylyl)21-dmpe) (6), respectively. Remarkably, the stabilization of Mn(0) in the coordination sphere of the [SiNSi] ligand favors the d7 low-spin electronic configuration, as suggested by EPR spectroscopy, SQUID measurements and DFT calculations. The suitability of 4 acting as a superior pre-catalyst in regioselective hydroboration of quinolines has also been demonstrated.

Graphical abstract: A bis(silylene)pyridine pincer ligand can stabilize mononuclear manganese(0) complexes: facile access to isolable analogues of the elusive d7-Mn(CO)5 radical

Supplementary files

Article information

Article type
Edge Article
Submitted
15 Jun 2022
Accepted
05 Jul 2022
First published
06 Jul 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2022,13, 8634-8641

A bis(silylene)pyridine pincer ligand can stabilize mononuclear manganese(0) complexes: facile access to isolable analogues of the elusive d7-Mn(CO)5 radical

S. Kalra, D. Pividori, D. Fehn, C. Dai, S. Dong, S. Yao, J. Zhu, K. Meyer and M. Driess, Chem. Sci., 2022, 13, 8634 DOI: 10.1039/D2SC03352F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements