Large optical anisotropy-oriented construction of a carbonate-nitrate chloride compound as a potential ultraviolet birefringent material†
Abstract
The design of new birefringent materials is very significant owing to their indispensable role in modulating the polarization of light and is vital in laser technology. Herein, by applying a large optical anisotropy-oriented construction induced by a synergy effect of multiple anionic groups, a promising carbonate-nitrate chloride, Na3Rb6(CO3)3(NO3)2Cl·(H2O)6, has been designed and synthesized successfully by the solvent evaporation method and single crystals of centimeter size were obtained by the recrystallization method in aqueous solution. It crystallizes in the hexagonal P63/mcm space group, the RbO9Cl polyhedra and the NaO7 polyhedra construct a three-dimensional (3D) framework by sharing O or Cl atoms and trigonal plane units (CO3 and NO3). The transmittance spectrum based on a 1 mm thick single-crystal plate shows that its short UV cut-off edge is about 231 nm. And the refractive index differences (0.14 @ 546 nm) measured by using a polarizing microscope on the (101) crystal plane, proves that Na3Rb6(CO3)3(NO3)2Cl·(H2O)6 has a large birefringence, which has potential application in the solar blind ultraviolet region. The theoretical calculations reveal that the π-conjugated CO3 and NO3 groups are the main cause of the birefringence. It demonstrates that combining π-conjugated CO3 and NO3 groups in one structure is an extremely effective strategy to explore new UV birefringent crystals.