Issue 43, 2022

Spatial disposition of square-planar mononuclear nodes in metal–organic frameworks for C2H2/CO2 separation

Abstract

The efficient separation of acetylene (C2H2) from its mixture with carbon dioxide (CO2) remains a challenging industrial process due to their close molecular sizes/shapes and similar physical properties. Herein, we report a microporous metal–organic framework (JNU-4) with square-planar mononuclear copper(II) centers as nodes and tetrahedral organic linkers as spacers, allowing for two accessible binding sites per metal center for C2H2 molecules. Consequently, JNU-4 exhibits excellent C2H2 adsorption capacity, particularly at 298 K and 0.5 bar (200 cm3 g−1). Detailed computational studies confirm that C2H2 molecules are indeed predominantly located in close proximity to the square-planar copper centers on both sides. Breakthrough experiments demonstrate that JNU-4 is capable of efficiently separating C2H2 from a 50 : 50 C2H2/CO2 mixture over a broad range of flow rates, affording by far the largest C2H2 capture capacity (160 cm3 g−1) and fuel-grade C2H2 production (105 cm3 g−1, ≥98% purity) upon desorption. Simply by maximizing accessible open metal sites on mononuclear metal centers, this work presents a promising strategy to improve the C2H2 adsorption capacity and address the challenging C2H2/CO2 separation.

Graphical abstract: Spatial disposition of square-planar mononuclear nodes in metal–organic frameworks for C2H2/CO2 separation

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Aug 2022
Accepted
16 Oct 2022
First published
17 Oct 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 12876-12882

Spatial disposition of square-planar mononuclear nodes in metal–organic frameworks for C2H2/CO2 separation

H. Zeng, X. Xie, Y. Wang, D. Luo, R. Wei, W. Lu and D. Li, Chem. Sci., 2022, 13, 12876 DOI: 10.1039/D2SC04324F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements