Issue 45, 2022

Formation of exceptional monomeric YPhos–PdCl2 complexes with high activities in coupling reactions

Abstract

The use of well-defined palladium(II) complexes as precatalysts for C–X cross-coupling reactions has improved the use of palladium catalysts in organic synthesis including large-scale processes. Whereas sophisticated Pd(II) precursors have been developed in the past years to facilitate catalyst activation as well as the handling of systems with more advanced monophosphine ligands, we herein report that simple PdCl2 complexes function as efficient precatalysts for ylide-substituted phosphines (YPhos). These complexes are readily synthesized from PdCl2 sources and form unprecedented monomeric PdCl2 complexes without the need for any additional coligand. Instead, these structures are stabilized through a unique bonding motif, in which the YPhos ligands bind to the metal through the adjacent phosphine and ylidic carbon site. DFT calculations showed that these bonds are both dative interactions with the stronger interaction originating from the electron-rich phosphine donor. This bonding mode leads to a remarkable stability even towards air and moisture. Nonetheless, the complexes readily form monoligated LPd(0) complexes and thus the active palladium(0) species in coupling reactions. Accordingly, the YPhos–PdCl2 complexes serve as highly efficient precatalysts for a series of C–C and C–X coupling reactions. Despite their simplicity they can compete with the efficiency of more complex and less stable precatalysts.

Graphical abstract: Formation of exceptional monomeric YPhos–PdCl2 complexes with high activities in coupling reactions

Supplementary files

Article information

Article type
Edge Article
Submitted
12 Aug 2022
Accepted
21 Oct 2022
First published
26 Oct 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2022,13, 13552-13562

Formation of exceptional monomeric YPhos–PdCl2 complexes with high activities in coupling reactions

I. Rodstein, L. Kelling, J. Löffler, T. Scherpf, A. Sarbajna, D. M. Andrada and V. H. Gessner, Chem. Sci., 2022, 13, 13552 DOI: 10.1039/D2SC04523K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements