Issue 41, 2022

Axially chiral indolenine derived chromophore dimers and their chiroptical absorption and emission properties

Abstract

Yamamoto homocoupling of two chiral oxindoles led to the atropo-diastereoselective formation of an axially chiral oxindole dimer. This building block served as the starting material for the syntheses of axially chiral squaraine and merocyanine chromophore dimers. These dimers show pronounced chiroptical properties, this is, outstandingly high ECD signals (Δε up to ca. 1500 M−1 cm−1) as a couplet with positive Cotton effect for the P-configuration around the biaryl axis and a negative Cotton effect for the M-configuration. All investigated dimers also exhibit pronounced circularly polarised emission with anisotropy values of ca. 10−3 cgs. Time-dependent density functional calculations were used to analyse the three contributions (local one electron, electric–magnetic coupling, and exciton coupling) to the rotational strength applying the Rosenfeld equation to excitonically coupled chromophores. While the exciton coupling term proves to be the dominant one, the electric–magnetic coupling possesses the same sign and adds significantly to the total rotational strength owing to a favourable geometric arrangement of the two chromophores within the dimer.

Graphical abstract: Axially chiral indolenine derived chromophore dimers and their chiroptical absorption and emission properties

Supplementary files

Article information

Article type
Edge Article
Submitted
17 Aug 2022
Accepted
05 Oct 2022
First published
06 Oct 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 12229-12238

Axially chiral indolenine derived chromophore dimers and their chiroptical absorption and emission properties

E. Freytag, M. Holzapfel, A. Swain, G. Bringmann, M. Stolte, F. Würthner and C. Lambert, Chem. Sci., 2022, 13, 12229 DOI: 10.1039/D2SC04600H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements