Improving levoglucosan and hydrocarbon production through gas-phase synergy during cellulose and polyolefin co-pyrolysis†
Abstract
The co-pyrolysis of biomass and plastic is a promising technology for producing valuable chemicals. Herein, we report a novel split-flow tube reactor designed to focus on gas-phase synergy during the co-pyrolysis of cellulose and polyolefins, such as polyethylene (PE) and polypropylene (PP), at 650 °C in various blending proportions. The split-flow tube reactor significantly enhances levoglucosan (LG) recovery compared with the conventional straight-tube reactor, resulting in 3.1- and 2.1-times higher yields than those theoretically calculated (2.8 wt%) for 1 : 2 w/w cellulose/PE and 1 : 2 w/w cellulose/PP. In addition, gas-phase interactions between cellulose and polyolefin pyrolyzates were found to improve hydrocarbon-oil production by enhancing the decomposition of polyolefin-derived wax. These findings reveal that gas-phase pyrolytic interactions have significant potential for enhancing the production of chemical feedstocks or fuels from biomass and plastic waste.