Efficient production of ethylene glycol from cellulose over Co@C catalysts combined with tungstic acid†
Abstract
Catalytic conversion of renewable cellulose, instead of fossil resources, to high-value ethylene glycol (EG) is of great significance for reducing considerable worries regarding the energy problem. However, the EG production from cellulose is dependent on Ni and Ru based catalysts. Herein, encapsulated Co@C catalyst was firstly applied for EG production from cellulose combined with tungstic acid (TA). The mixing of the two catalysts in different ratios was compared and well-controlled, and the highest 67.3% yield of EG can be achieved. TA is used mainly to promote both the cellulose hydrolysis and the retro-aldol reaction of glucose to glycolaldehyde. Co@C catalysts are responsible for the hydrogenation of glycolaldehyde to EG. Compared with traditional noble metals and composite catalysts, the inexpensive and easily synthesized Co@C catalysts could greatly reduce the cost of production of EG. The Co@C catalysts encapsulated with outside graphene layers can keep high stability for at least 6 runs.