Lubricated soft normal elastic contact of a sphere: a new numerical method and experiment
Abstract
An important problem in lubrication is the squeezing of a thin liquid film between a rigid sphere and an elastic substrate under normal contact. Numerical solution of this problem typically uses iteration techniques. A difficulty with iteration schemes is that convergence becomes increasingly difficult under increasingly heavy loads. Here we devise a numerical scheme that does not involve iteration. Instead, a linear problem is solved at every time step. The scheme is fully automatic, stable and efficient. We illustrate this technique by solving a relaxation test in which a rigid spherical indenter is brought rapidly into normal contact with a thick elastic substrate lubricated by a liquid film. The sphere is then fixed in position as the pressure relaxes. We also carried out relaxation experiments on a lubricated soft PDMS (polydimethysiloxane) substrate under different conditions. These experiments are in excellent agreement with the numerical solution.