Issue 17, 2022

Three-dimensional lattice deformation of blue phase liquid crystals under electrostriction

Abstract

In this work, we investigate the three-dimensional lattice deformation of blue phase (BP) liquid crystals under electrostriction. Using the in situ measurement of light diffraction signals from a twinned crystal, we propose a method to experimentally determine the lattice constants of BPs under an electric field; the overlap angle in the diffraction pattern of BP twinning domains gives the ratio of lattice constants in the lateral direction of the field, which can be analyzed together with the Bragg reflection peak wavelength along the field direction to yield three-dimensional lattice constants. The obtained values are confirmed to show good agreement with the diffraction data measured from a converging monochromatic light. Furthermore, by applying the method to BPs in a thin cell and specifying the transitions of azimuthal orientation, three-dimensional lattice deformation of BP I crystals and evolution of the azimuthal orientation are clarified under the electrostriction. Results reveal that the BPs confined to thin films undergo discrete elongation along the field direction and the BP I crystal undergoes larger lattice deformation in the field-perpendicular directions than that along the field. Our work allows a relatively easy determination of three-dimensional lattice constants of deformed BP crystals under an electric field, and the obtained results provide important insights into the understanding of the electrostriction behaviour of BPs towards improvement of the electro-optical performance of BP devices in practical applications.

Graphical abstract: Three-dimensional lattice deformation of blue phase liquid crystals under electrostriction

Supplementary files

Article information

Article type
Paper
Submitted
18 Feb 2022
Accepted
24 Mar 2022
First published
06 Apr 2022

Soft Matter, 2022,18, 3328-3334

Three-dimensional lattice deformation of blue phase liquid crystals under electrostriction

Y. Zhang, H. Yoshida, F. Chu, Y. Guo, Z. Yang, M. Ozaki and Q. Wang, Soft Matter, 2022, 18, 3328 DOI: 10.1039/D2SM00244B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements