Issue 24, 2022

Micellar assembly leading to structural growth/transition in normal and reverse Tetronics® in single and mixed solution environment

Abstract

This study scrutinizes the self-association of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers as normal Tetronic® (T904) and reverse Tetronic® R (T90R4) with varying molecular characteristics and different hydrophilic–hydrophobic ratios in an aqueous solution environment. These thermo-responsive solutions appear clear, transparent or bluish up to 10%w/v, which anticipated the probable transition of unimers to spherical or ellipsoidal micelles which is complemented by scattering experiments. In a single-solution environment, 10%w/v T904 formed star-shaped micelles at ambient temperature and exhibited a micellar growth/transition with temperature ageing. While 10%w/v T90R4 exists as unimers or a Gaussian coil over a wide range of temperature. Very interestingly, close to the cloud point (CP) flower-shaped spherical and ellipsoidal micelles were formed. A similar proposed micellar scheme was also examined for mixed systems T904 : T90R4 in varying ratios (1 : 0, 3 : 1, 1 : 1, 1 : 3 and 0 : 1) giving an account to the solution behavior of the mixtures. An amalgamation of dynamic light scattering (DLS) and small-angle neutron scattering (SANS) techniques achieved the thorough extraction of the structural parameters of the micellar system. The hydrodynamic diameter (Dh) of the micelles with temperature variation was evaluated from dynamic light scattering (DLS) while the structure factor of the micelles was found by employing small-angle neutron scattering (SANS). Furthermore, the single and mixed micellar systems were quantitatively and qualitatively examined for anticancer drug solubilization using UV-vis spectroscopy for their superior use as potential nanocargos.

Graphical abstract: Micellar assembly leading to structural growth/transition in normal and reverse Tetronics® in single and mixed solution environment

Article information

Article type
Paper
Submitted
11 Mar 2022
Accepted
24 May 2022
First published
25 May 2022

Soft Matter, 2022,18, 4543-4553

Micellar assembly leading to structural growth/transition in normal and reverse Tetronics® in single and mixed solution environment

D. Patel, D. Ray, V. K. Aswal, K. Kuperkar and P. Bahadur, Soft Matter, 2022, 18, 4543 DOI: 10.1039/D2SM00321J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements