Issue 39, 2022

Bio-based poly(hexamethylene 2,5-furandicarboxylate-co-2,6-naphthalate) copolyesters: a study of thermal, mechanical, and gas-barrier properties

Abstract

A series of poly(hexamethylene 2,5-furandicarboxylate-co-2,6-naphthalate) copolyesters were synthesized using various amounts of poly(hexylene 2,5-furandicarboxylate) (PHF) and poly(hexylene 2,6-naphthalate) (PHN) via melt polymerization. The effects of introducing 2,6-naphthalene dicarboxylic acid (NDCA) on the thermal, mechanical, and gas-barrier properties were investigated. When the NDCA content was less than 30 mol%, the temperatures of crystallization (Tc) and melting (Tm) decreased as the amount of NDCA was increased owing to disturbance of the polymer-chain regularity. When the NDCA content was above 50 mol%, the Tc and Tm of the materials increased as the NDCA content was increased, showing that the dominant crystallization behavior varied from 2,5-furandicarboxylic acid to NDCA. Hence, the glass transition temperature (Tg) increased as the NDCA content was increased, which was attributed to the incorporation of NDCA with a more rigid naphthalate structure compared with the furan ring. The gas-barrier properties of the samples were observed to improve with the introduction of NDCA; this tendency could be explained by the β-relaxation behavior and free volume values of the samples in the amorphous state. The activation energy (Ea) of β-relaxation increased with the NDCA content, indicating that higher amounts of energy were needed to trigger the onset of long-range molecular motions. Free-volume calculations of the polymer structure showed that the introduction of NDCA hindered the space for gas penetration. For these reasons, the gas-barrier properties were improved and evaluated.

Graphical abstract: Bio-based poly(hexamethylene 2,5-furandicarboxylate-co-2,6-naphthalate) copolyesters: a study of thermal, mechanical, and gas-barrier properties

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2022
Accepted
13 Sep 2022
First published
14 Sep 2022

Soft Matter, 2022,18, 7631-7641

Bio-based poly(hexamethylene 2,5-furandicarboxylate-co-2,6-naphthalate) copolyesters: a study of thermal, mechanical, and gas-barrier properties

H. Mao, Z. Yang, C. Chen and S. Rwei, Soft Matter, 2022, 18, 7631 DOI: 10.1039/D2SM00689H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements