Issue 35, 2022

Relative effects of polymer composition and sample preparation on glass dynamics

Abstract

Modern design of common adhesives, composites and polymeric parts makes use of polymer glasses that are stiff enough to maintain their shape under a high stress while still having a ductile behavior after the yield point. Typically, material compositions are tuned with co-monomers, polymer blends, plasticizers, or other additives to arrive at a tradeoff between the elastic modulus and toughness. In contrast, strong changes to the mechanics of a glass are possible by changing only the molecular packing during vitrification or even deep in the glassy state. For example, physical aging or processing techniques such as physical vapor deposition increase the density, embrittle the material, and increase elastic modulus. Here, we use molecular simulations, validated by positron annihilation lifetime spectroscopy (PALS) and quasi-elastic neutron scattering, to understand the free volume distribution and the resulting dynamics of glassy co-polymers where the composition is systemically varied between polar 5-norbornene-2-methanol (NBOH) and non-polar ethylidene norbornene (ENB) monomers. In these polymer glasses, we analyze the structural features of the unoccupied volume using clustering analysis, where the clustering is parameterized to reproduce experimental measurements of the same features from PALS. Further, we analyze the dynamics, quantified by the Debye–Waller factor, and compare the results with softer, lower density states. Our findings indicate that faster structural relaxations and potentially improved ductility are possible through changes to the geometric structure and fraction of the free volume, and that the resulting changes to the glass dynamics are comparable to large changes in the monomer composition.

Graphical abstract: Relative effects of polymer composition and sample preparation on glass dynamics

Supplementary files

Article information

Article type
Communication
Submitted
27 May 2022
Accepted
17 Aug 2022
First published
17 Aug 2022

Soft Matter, 2022,18, 6511-6516

Author version available

Relative effects of polymer composition and sample preparation on glass dynamics

R. M. Elder, A. L. Forster, A. Krishnamurthy, J. M. Dennis, H. Akiba, O. Yamamuro, K. Ito, K. M. Evans, C. Soles and T. W. Sirk, Soft Matter, 2022, 18, 6511 DOI: 10.1039/D2SM00698G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements