Issue 39, 2022

Highly stretchable ionically crosslinked acrylate elastomers inspired by polyelectrolyte complexes

Abstract

Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications.

Graphical abstract: Highly stretchable ionically crosslinked acrylate elastomers inspired by polyelectrolyte complexes

Supplementary files

Article information

Article type
Paper
Submitted
07 Jun 2022
Accepted
21 Sep 2022
First published
22 Sep 2022

Soft Matter, 2022,18, 7679-7688

Author version available

Highly stretchable ionically crosslinked acrylate elastomers inspired by polyelectrolyte complexes

H. Cai, Z. Wang, N. W. Utomo, Y. Vidavsky and M. N. Silberstein, Soft Matter, 2022, 18, 7679 DOI: 10.1039/D2SM00755J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements