Issue 41, 2022

A meso-scale model of clay matrix: the role of hydration transitions in geomechanical behavior

Abstract

While much progress has been made on the modeling of swelling clays at the molecular scale in recent decades, up-scaling to the macroscopic scale remains a challenge, in particular because the mesoscopic scale (between a few nanometers and a few hundreds of nanometers) is still poorly understood. In this article, we propose a new 2D granular model of clay at the mesoscale. This model is adapted to the modeling of a dense clay matrix representing geomechanical conditions (up to pressures of 10–100 MPa). Some salient features of this model with respect to the existing literature are: (1) its ability to capture hydration transitions occurring at small basal spacings (essential to model complex hydro-mechanical behaviors such as drying shrinkage), (2) the flexibility of the clay layers that becomes important at pressures exceeding 1 MPa, and (3) the control of the inter-layer shear strength critical to model plasticity. The model calibration is purely bottom-up, based on molecular modeling results only. The case of Na-montmorillonite (Na-Mnt) is investigated in detail, regarding isotropic compression (elasticity and plasticity), yield surface and desiccation. The behavior of the granular model appears well consistent with what is known experimentally for pure Na-Mnt, and offers valuable insight into meso-scale processes that could not be reached so far (role of hydration transition, layer flexibility, and impact of loading history). This granular model is a first step toward quantitative up-scaling of molecular modeling of swelling clay for geomechanical applications.

Graphical abstract: A meso-scale model of clay matrix: the role of hydration transitions in geomechanical behavior

Article information

Article type
Paper
Submitted
10 Jun 2022
Accepted
23 Sep 2022
First published
26 Sep 2022

Soft Matter, 2022,18, 7931-7948

A meso-scale model of clay matrix: the role of hydration transitions in geomechanical behavior

F. Asadi, H. Zhu, M. Vandamme, J. Roux and L. Brochard, Soft Matter, 2022, 18, 7931 DOI: 10.1039/D2SM00773H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements