Pulling simulation predicts mixing free energy for binary mixtures
Abstract
Predicting the mixing free energy of mixing for binary mixtures using simulations is challenging. We present a novel molecular dynamics (MD) simulation method to extract the chemical potential μ(X) for mixtures of species A and B. Each molecule of species A and B is placed in equal and opposite harmonic potentials ±(1/2)Uex(x) centered at the middle of the simulation box, resulting in a nonuniform mole fraction profile X(z) in which A is concentrated at the center, and B at the periphery. Combining these, we obtain Uex(X), the exchange chemical potential required to induce a given deviation of the mole fraction from its average. Simulation results for Uex(X) can be fitted to simple free energy models to extract the interaction parameter χ for binary mixtures. To illustrate our method, we investigate benzene–pyridine mixtures, which provide a good example of regular solution behavior, using both TraPPE united-atom and OPLS all-atom potentials, both of which have been validated for pure fluid properties. χ values obtained with the new method are consistent with values from other recent simulation methods. However, the TraPPE-UA results differ substantially from the χ obtained from VLE experimental data, while the OPLS-AA results are in reasonable agreement with experiment, highlighting the importance of accurate potentials in correctly representing mixture behavior.