Abstract
The two-state stochastic phenomenon is observed in various systems and is attracting more interest, and it can be described by the two-state random walk (TSRW) model. The TSRW model is a typical two-state renewal process alternating between the continuous-time random walk state and the Lévy walk state, in both of which the sojourn time distributions follow a power law. In this paper, by discussing the statistical properties and calculating the ensemble averaged and time averaged mean squared displacement, the ergodic property and the ultimate diffusive behavior of the aging TSRW is studied. Results reveal that because of the two-state intermittent feature, ergodicity and nonergodicity can coexist in the aging TSRW, which behave as the time scalings of the time averages and ensemble averages not being identically equal. In addition, we find that the unique state occupation mechanism caused by the diverging mean of the sojourn times of one state, determines the aging TSRW's ultimate diffusive behavior at extremely large timescales, i.e., instead of the term with the larger diffusion exponent, the diffusion is surprisingly characterized by the term with the smaller one, which is distinctly different from previous conclusions and known results. At last, we note that the Lévy walk with rests model which also displays aging and ergodicity breaking, can be generalized by the TSRW model.