Issue 47, 2022

Sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene/sulfonated poly(ether sulfone) and hexagonal boron nitride electrolyte membrane for fuel cell applications

Abstract

Novel proton exchange membranes consisting of sulfonated polystyrene ethylene butylene polystyrene (sPSEBPS), sulfonated poly ether sulfone (SPES) and hexagonal boron nitride (hBN) were fabricated using a facile solution casting technique. The PSEBPS polymer was functionalized using chlorosulfonic acid as the sulfonating agent. Polymerization was typically conducted by taking three different monomers, namely 3,6-dihydroxy naphthalene-2,7-disulfonic acid disodium salt, 4,4′-dichlorodiphenyl sulfone, and bisphenol-A, to yield sulfonated poly ether sulfone (SPES). The resultant SPES polymer was blended with sPSEBPS followed by incorporation with an appropriate quantity of hBN. The physicochemical and structural properties of the membranes were studied in order to evaluate their compatibility with fuel cell applications. X-Ray photoelectron spectroscopy data validated the successful incorporation of the filler into the polymer matrix. Water absorption of the membranes was found in the range between 19.5 and 29.8%. The membrane loaded with 4.0 wt% of hBN showed the maximum ion-exchange capacity of 1.21 meq g−1, whereas the control sPSEBPS/SPES membrane was restricted to 0.48 meq g−1. The composite membrane loaded with hBN displayed higher thermal stability than that of the control sample. The sPSEBPS/SPES/hBN-4 composite membrane exhibited an ionic conductivity of 0.0329 S cm−1 at 30 °C. Overall, the experimental data of the prepared composite membranes revealed that the materials are potential candidates for fuel cells.

Graphical abstract: Sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene/sulfonated poly(ether sulfone) and hexagonal boron nitride electrolyte membrane for fuel cell applications

Supplementary files

Article information

Article type
Paper
Submitted
18 Aug 2022
Accepted
30 Oct 2022
First published
31 Oct 2022

Soft Matter, 2022,18, 8952-8960

Sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene/sulfonated poly(ether sulfone) and hexagonal boron nitride electrolyte membrane for fuel cell applications

P. Kulasekaran, S. Moorthy, P. Deivanayagam, K. Sekar and H. Pushparaj, Soft Matter, 2022, 18, 8952 DOI: 10.1039/D2SM01123A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements