Issue 47, 2022

Semi-conducting microspheres formed from glucose for semi-active electric field-responsive electrorheological systems

Abstract

In this study glucose particles were successfully transformed to conducting carbonaceous microspheres through sequential hydrothermal and thermal carbonization. The prepared carbonaceous particles were thereafter used as a dispersed phase in a novel electrorheological fluid. Due to significant enhancements of the conductivity and dielectric properties when compared with the glucose precursor, the prepared electrorheological fluid based on carbonaceous microspheres exhibited a yield stress of over 200 Pa at a particle concentration of 5 wt% at an electric field intensity of 3 kV mm−1, and overcomes recently published novel electrorheological fluids and others based on carbonized particles. In order to estimate the exact rheological parameters, the measured data were treated using a mathematical model Cho–Choi-Jhon, and the reproducibility and reversible possibility to control the viscosity of the novel prepared electrorheological fluid were confirmed through time dependence tests at various electric field intensities. Not only did this approach lead to carbonaceous conducting particles with high performance in electrorheology, but the yield after carbonization at 500 °C was also 60%. It was thus confirmed that unique carbonaceous conducting particles were prepared using a sustainable method giving high yields, and can be potentially used in many other applications where such carbonaceous particles are required.

Graphical abstract: Semi-conducting microspheres formed from glucose for semi-active electric field-responsive electrorheological systems

Article information

Article type
Paper
Submitted
23 Aug 2022
Accepted
05 Nov 2022
First published
07 Nov 2022

Soft Matter, 2022,18, 9037-9044

Semi-conducting microspheres formed from glucose for semi-active electric field-responsive electrorheological systems

E. Kutalkova and T. Plachy, Soft Matter, 2022, 18, 9037 DOI: 10.1039/D2SM01145J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements