Chiral three-dimensional supramolecular assemblies: colloidal onions, cubosomes, and hexosomes†
Abstract
Amphiphilic molecules can self-assemble in solution into a variety of supramolecular assemblies, ranging from simple micelles, ribbons, and tubes to complex cubosomes with bicontinuous cubic nanostructures. It is well known that the self-assembly of chiral building blocks into one-dimensional (1D) twisted fibers, helical ribbons, and tubes enables chiral transfer from the molecular scale to super-assemblies. In this study, we investigate the chirality of three-dimensional (3D) supramolecular assemblies, such as colloidal onions, cubosomes, and hexosomes, formed from the same chiral heteroclusters. Unlike supramolecular 1D helical ribbons, these assemblies do not have chiral external shapes or chiral internal nanostructures, but they do exhibit circular dichroism, suggesting that they are chiral. Structural studies revealed that the ordered arrangement of the chiral units in curved superstructures is the origin of the supramolecular chirality of these 3D assemblies. Therefore, this study provides insights for enriching the diversity and complexity of supramolecular chiral assemblies.