Issue 3, 2022

Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells

Abstract

Reducing damage caused by sputtering of transparent conductive oxide (TCO) electrodes is critical in achieving highly efficient and stable perovskite/silicon tandem solar cells. Here we study the sputter caused damage to bathocuproine (BCP), which is widely used in highly efficient p–i–n structure single junction perovskite solar cells. While the BCP buffer layer protects the underlying layers from damage, it itself can be damaged by sputtering of TCOs at a wide range of target–substrate distances, supported by molecular dynamics simulation. More intriguingly, it is observed that TCO easily peeled off after sputtering when the sputtering target is close to the substrate. This is ascribed to the formation of stress during the cooling down process after sputtering due to different thermal expansion coefficients of the layers. Our studies explain why tin oxide (SnO2) made by atomic layer deposition can replace BCP for a much better tandem device performance. SnO2 has high affinity with the sputtered TCO electrode to suppress the peeling-off issue and has higher bond energy to resist sputter induced damage, thus allowing a wider window of target–substrate distances than BCP during TCO sputtering. Ultimately, we demonstrate an efficient perovskite/silicon monolithic tandem solar cell with an efficiency of 26.0% to illustrate the beneficial effects of reduced stress and damage.

Graphical abstract: Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2021
Accepted
10 Dec 2021
First published
13 Dec 2021

J. Mater. Chem. A, 2022,10, 1343-1349

Author version available

Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells

K. Liu, B. Chen, Z. J. Yu, Y. Wu, Z. Huang, X. Jia, C. Li, D. Spronk, Z. Wang, Z. Wang, S. Qu, Z. C. Holman and J. Huang, J. Mater. Chem. A, 2022, 10, 1343 DOI: 10.1039/D1TA09143C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements