Issue 16, 2022

Solid polymer electrolytes from polyesters with diester sidechains for lithium metal batteries

Abstract

A series of polymethacrylates and polyacrylates carrying diester sidechain moieties with varying alkyl spacer lengths are designed, synthesized, and evaluated as solid polymer electrolytes (SPEs) in lithium metal batteries (LMBs). These amorphous polymers with glass transition temperatures in the range of −58 to +32 °C are tested as SPEs in combination with LiTFSI or LiFSI. At an optimum salt concentration of 25 wt%, ionic conductivities up to 10−4 S cm−1 at 70 °C are achieved. These SPEs reveal high lithium transport numbers (0.5–0.7) and high electrochemical stability (5.4 V vs. Li/Li+) as determined by LSV. In combination with an ultrathin polyimide membrane and 10 wt% TiO2 nanoparticles, dendrite-free plating/stripping at 40 and 70 °C is realized in symmetrical Li|SPE|Li cells. Detailed extended distribution of relaxation times (eDRT) analysis of impedance measurements is employed for understanding the diverse cell processes. In solvent-free LMBs comprising a polyimide membrane soaked with the nanocomposite polyester electrolyte, lithium metal foil as the anode and an optimized LiFePO4 cathode, a very high initial specific discharge capacity of 152 mA h g− 1 (at 0.2C, 70 °C), excellent capacity retention of 94% after 100 cycles (at 1C, 70 °C) and negligible capacity fading even at 2C (96% retention after 300 cycles) are demonstrated. These novel polyester-based SPEs exhibit high cycling stability at 40 °C, making them highly attractive for room temperature applications.

Graphical abstract: Solid polymer electrolytes from polyesters with diester sidechains for lithium metal batteries

Supplementary files

Article information

Article type
Paper
Submitted
28 Jan 2022
Accepted
07 Mar 2022
First published
11 Mar 2022

J. Mater. Chem. A, 2022,10, 8932-8947

Solid polymer electrolytes from polyesters with diester sidechains for lithium metal batteries

D. Rosenbach, A. Krimalowski, H. Erabhoina and M. Thelakkat, J. Mater. Chem. A, 2022, 10, 8932 DOI: 10.1039/D2TA00800A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements