Issue 19, 2022

Surface engineering of MXenes for energy and environmental applications

Abstract

MXenes, a new family of two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides, have received considerable attention in energy and environmental applications due to their intriguing electronic, electrochemical, optical, and chemical properties. Applications of MXenes have been witnessed in photocatalysis, electrocatalysis, thermocatalysis, sensing and biosensing, electrochemical energy storage, energy conversion and storage, rechargeable batteries, supercapacitors, and biomedicine. Notably, the tunable surface chemistry of MXenes plays an important role in their success in those applications. The surface composition of MXenes is considered to have a significant influence on their physicochemical properties and functionalities. In order to achieve a comprehensive understanding and rational design of MXenes by surface engineering, in this review, we highlight the application of several kinds of surface engineering approaches for MXenes, including tuning the surface termination groups, surface functionalization, surface defects, surface doping, surface oxidation, and the theoretical simulation of surface engineering of MXenes. Moreover, the relationship between the surface engineering and the physicochemical properties of MXenes is discussed. Finally, the ongoing challenges and opportunities for the future development of MXene surface engineering are also highlighted.

Graphical abstract: Surface engineering of MXenes for energy and environmental applications

Article information

Article type
Review Article
Submitted
11 Feb 2022
Accepted
08 Apr 2022
First published
27 Apr 2022

J. Mater. Chem. A, 2022,10, 10265-10296

Author version available

Surface engineering of MXenes for energy and environmental applications

T. Su, X. Ma, J. Tong, H. Ji, Z. Qin and Z. Wu, J. Mater. Chem. A, 2022, 10, 10265 DOI: 10.1039/D2TA01140A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements