Issue 42, 2022

A meta-alkylthio-phenyl chain–substituted small-molecule donor as the third component for high-efficiency organic solar cells

Abstract

Ternary organic solar cells (OSCs) have attracted increasing attention because they are a feasible and efficient strategy to improve the power conversion efficiency (PCE) of OSCs. However, the rational molecular design of guest materials with a suitable absorption spectrum, energy level and molecular packing is still challenging. Herein, a large-bandgap small-molecule (SM) donor, BTC, incorporated with meta-alkylthio-phenyl-substituted benzo[1,2-b : 4,5-b′]dithiophene (BDT) as the core, was designed and synthesized for high-performance ternary OSCs. It possesses a deeper HOMO (highest occupied molecular orbital) level compared to PM6, which leads to a higher open-circuit voltage (VOC). Moreover, BTC exhibits good miscibility and complementary absorption with PM6 in the near-ultraviolet region, favoring the photovoltaic performance of OSCs by enhancing the short-circuit current density (JSC). Additionally, the ternary blend film with 15 wt% BTC achieved an optimized morphology with a nanofibrous network and strong face-on molecular stack, resulting in higher and more balanced charge mobilities, lower charge recombination and more efficient exciton dissociation compared to the binary blend. Therefore, we have successfully demonstrated a PCE of 17.32% for the ternary OSCs with 15 wt% BTC, with simultaneously improved VOC, JSC and FF compared to the PM6 : Y6 binary OSCs (15.51%). Moreover, the replacement of the acceptor with L8-BO further improves the PCE of ternary OSCs by up to 18.41%. This study provides a promising building block and effective design to fulfill the prerequisites of the absorption spectrum, molecular packing, energetics, and miscibility of small-molecule donors to achieve high-performance ternary OSCs.

Graphical abstract: A meta-alkylthio-phenyl chain–substituted small-molecule donor as the third component for high-efficiency organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2022
Accepted
02 Oct 2022
First published
03 Oct 2022

J. Mater. Chem. A, 2022,10, 22812-22818

A meta-alkylthio-phenyl chain–substituted small-molecule donor as the third component for high-efficiency organic solar cells

C. Zhang, J. Li, L. Ji, H. Hu, G. Li and K. Wang, J. Mater. Chem. A, 2022, 10, 22812 DOI: 10.1039/D2TA06706D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements