Issue 13, 2022

3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy

Abstract

We demonstrate the self-supporting 3D printing of complex hydrogel structures based on simultaneous crosslinking reactions while printing. The printing strategy is based on the Schiff base reaction and metal coordination with a two-step crosslinking process. The printing ink was first prepared by dispersing oxidized sodium alginate (OSA) and adipic dihydrazide (ADH) in poly(acrylamide-co-acrylic acid) (P(AAm-co-AAc)) polymer solutions, and was mixed and printed into 3D structures with an extrusion-based coaxial printing platform. Because of the rapid chemical crosslinking reaction between the aldehyde group in OSA and the hydrazide group in ADH, the printed structures can be solidified quickly, and are further crosslinked by forming carboxyl-Fe3+ coordination complexes to enhance their mechanical properties. The dynamic time-sweep rheological properties of the gel composed of different proportions of OSA and ADH were systematically investigated for the characteristic gelation time, and compression tests were carried out to measure the mechanical properties of the gel composed of OSA and ADH. Combining the gelation time and mechanical properties of the gel, the weight ratio of OSA and ADH was selected as 1 : 0.44 for an optimized setting in the subsequent printing. To evaluate the printability of inks, the material formula and printing parameters were systematically varied. The ink exhibited a wide printing range, self-supporting properties, and good printability. Tensile tests of the printed single fiber crosslinked by Fe3+ show that its strength and toughness are tunable. Complex 3D structures such as pyramids, cylinders, and noses were constructed to demonstrate the printability of the ink. This printing method provides a facile approach for tough hydrogel fabrication without changing the rheological properties of the ink or sacrificing the ultimate mechanical properties of the printed materials.

Graphical abstract: 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2021
Accepted
02 Feb 2022
First published
02 Feb 2022

J. Mater. Chem. B, 2022,10, 2126-2134

3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy

G. Guo, Y. Wu, C. Du, J. Yin, Z. L. Wu, Q. Zheng and J. Qian, J. Mater. Chem. B, 2022, 10, 2126 DOI: 10.1039/D1TB02529E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements