Issue 20, 2022

EGCG-crosslinked carboxymethyl chitosan-based hydrogels with inherent desired functions for full-thickness skin wound healing

Abstract

Hydrogel wound dressings have attracted intense and increasing interest for their extracellular matrix like properties and bioactive material delivery ability. Various functional hydrogels loaded with metals (and their oxides), antibiotics and anti-inflammatory agents have been prepared to realize antioxidant, bactericidal and anti-inflammatory effects, accelerating wound healing. Nevertheless, it is still a big challenge to facilely fabricate hydrogel wound dressings with inherent desirable properties to promote wound healing and avoid some drawbacks such as toxicity of metals and drug resistance. Herein, we facilely prepared a series of (−)-epigallocatechin-3-O-gallate (EGCG)-crosslinked carboxymethyl chitosan-based hydrogels (EP gels) with inherent antioxidant, bactericidal and adhesive properties. Gluconate-terminated polyethylene glycol (PEG-glu) was introduced into gel networks to enhance the mechanical properties. The hydrogels are constructed via borate ester crosslinking between phenylboronic acid (PBA) groups of PBA-grafted carboxymethyl chitosan (CMCS-PBA) and diol groups of EGCG and PEG-glu. The hydrogels exhibited excellent self-healing properties, desirable mechanical and adhesive strength, free radical scavenging capability and outstanding bactericidal ability against S. aureus and E. coli. In the subsequent full-thickness skin defect model of mice, EP1 gel could promote the proliferation and remodeling process such as the regeneration of epidermis, dermis, and skin appendages, deposition of collagen, and upregulation of the VEGF level, thereby accelerating the healing of damaged skin. Overall, we facilely prepared polysaccharide-based hydrogels with inherent desirable properties as promising dressings for wound repair.

Graphical abstract: EGCG-crosslinked carboxymethyl chitosan-based hydrogels with inherent desired functions for full-thickness skin wound healing

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2022
Accepted
12 Apr 2022
First published
15 Apr 2022

J. Mater. Chem. B, 2022,10, 3927-3935

EGCG-crosslinked carboxymethyl chitosan-based hydrogels with inherent desired functions for full-thickness skin wound healing

Q. Wei, L. Ma, W. Zhang, G. Ma and Z. Hu, J. Mater. Chem. B, 2022, 10, 3927 DOI: 10.1039/D2TB00074A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements