Zwitterionic polymer coated sorafenib-loaded Fe3O4 composite nanoparticles induced ferroptosis for cancer therapy†
Abstract
Ferroptosis, as a form of cell death different from apoptosis, is very promising for the treatment of cancer in nonapoptotic systems. Since iron is a key component in the induction of ferroptosis in cells, the use of iron-based nanomaterials in treating cancer through ferroptosis is of great significance. Therefore, in this study, magnetic nanoparticles (MNP) were coated with the zwitterionic polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and then loaded with sorafenib (SRF) to obtain drug-loaded composite nanoparticles MNP@PMPC-SRF. Fe3O4 provided a large number of ferric/ferrous ions as an iron source, releasing Fe2+ for the regulation of the ferroptosis process and enhancing the effect of the induced cellular ferroptosis on the treatment of colon cancer with SRF. The zwitterionic polymer PMPC effectively extended the blood circulation time, resulting in an enhanced tumor accumulation of the nanodrug. MNP@PMPC-SRF exhibited good biocompatibility for in vivo application and showed an excellent tumor inhibitory effect on HCT116 tumor-bearing nude mice.