Issue 48, 2022

In situ assembled titanium carbide-based heterojunctions for the synergistic enhancement of NIR-II photothermal/photodynamic therapy against breast cancer

Abstract

The combined use of photothermal therapy (PTT) and photodynamic therapy (PDT) could circumvent the drawbacks of each individual therapeutic strategy, resulting in an enhanced antitumor effect. However, the lack of highly effective photo-agents that are irradiation-safe in the biologically transparent window hinder the advancement of phototherapy clinically. Hence, in this study, a charge separation engineering strategy was adopted to fabricate a nanoplatform with heterojunctions, namely, in situ TiO2-loaded MXene (Ti3C2/TiO2 heterojunctions). This nanoplatform exhibited reduced bandgap (1.68 eV), enhanced NIR-II photothermal conversion efficiency (44.98%), and extended absorption edge compared to pristine TiO2 for enhanced photodynamic effect. More importantly, the proliferation of tumor cells could be efficiently inhibited at a 5 mm chicken breast depth after 1064 nm laser irradiation, and the intracellular ROS production significantly increased under 660 nm or even 1064 nm laser irradiation with heterojunctions (HJs) compared with that of TiO2. Moreover, the in vivo data further confirmed that the as-prepared heterojunctions could efficiently eradicate tumors efficiently via improved photothermal effect with NIR-II laser irradiation and upregulated ROS production. Collectively, the reported HJs strategy provides an opportunity for the success of combinational PTT and PDT therapy in tumor treatment.

Graphical abstract: In situ assembled titanium carbide-based heterojunctions for the synergistic enhancement of NIR-II photothermal/photodynamic therapy against breast cancer

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2022
Accepted
08 Nov 2022
First published
09 Nov 2022

J. Mater. Chem. B, 2022,10, 10083-10096

In situ assembled titanium carbide-based heterojunctions for the synergistic enhancement of NIR-II photothermal/photodynamic therapy against breast cancer

H. Zhu, X. Zhang, Q. Wang, J. Deng, Z. Zhang, X. Zhang, J. Cao and B. He, J. Mater. Chem. B, 2022, 10, 10083 DOI: 10.1039/D2TB01783K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements