Distortion-driven spin switching in electron-doped metal porphyrins†
Abstract
Electron injection into electrode-supported metal complexes allows for charge redistribution within the molecule to be controlled. Here we show, for the first time, how the structural flexibility in electron-doped porphyrins is critical in defining charge localization by following the evolution of the spin state and charge distribution in the thermodynamically favored structure as a function of dopant dose and relaxation time. Two flexible transition metal-containing molecules are used as model systems, nickel and cobalt tetraphenylporphyrin, studied by combining a wide range of spectroscopic techniques with detailed DFT calculations.