Issue 30, 2022

Induced internal stresses and their relation to FLASH sintering of KNN ceramics

Abstract

Electric field and current applied to an unsintered ceramic body are known to promote low temperature and extremely fast densification, in a process referred to as FLASH sintering. Under the current urgency of the green transition of manufacturing processes, FLASH sintering is a very promising technology for materials industry. Suitable FLASH conditions result in dense ceramics but many issues associated with the effect of electric field and current on local chemistry, structure, and microstructure remain to be understood. We have used FLASH sintering to produce K0.5Na0.5NbO3 (KNN), a lead-free compound suitable for piezoelectric applications. Using a combined X-ray diffraction and Raman spectroscopy study, here we show for the first time that, although the FLASH process may produce homogeneous ceramics with negligible concentration of secondary phase, macroscopic core-localized stresses remain which have significant consequences on the final properties of the sintered material. In addition, the internal stress state and its dependence on the local temperature during FLASH sintering are established by Finite Element Modelling (FEM). The identification of the fine structure of FLASH sintered materials is critical for understanding the unique properties developed under this sintering process and for its development as an alternative low thermal budget sintering technology.

Graphical abstract: Induced internal stresses and their relation to FLASH sintering of KNN ceramics

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2022
Accepted
21 Jun 2022
First published
18 Jul 2022

J. Mater. Chem. C, 2022,10, 10916-10925

Induced internal stresses and their relation to FLASH sintering of KNN ceramics

R. Serrazina, M. Gomes, R. Vilarinho, L. Pereira, J. S. Dean, I. M. Reaney, A. M. O. R. Senos, P. M. Vilarinho and J. A. Moreira, J. Mater. Chem. C, 2022, 10, 10916 DOI: 10.1039/D2TC01680J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements