Issue 46, 2022

Local chemical origin of ferroelectric behavior in wurtzite nitrides

Abstract

Ferroelectricity enables key modern technologies from non-volatile memory to precision ultrasound. The first known wurtzite ferroelectric Al1−xScxN has recently attracted attention because of its robust ferroelectricity and Si process compatibility, but the chemical and structural origins of ferroelectricity in wurtzite materials are not yet fully understood. Here we show that ferroelectric behavior in wurtzite nitrides has local chemical rather than extended structural origin. According to our coupled experimental and computational results, the local bond ionicity and ionic displacement, rather than simply the change in the lattice parameter of the wurtzite structure, is key to controlling the macroscopic ferroelectric response in these materials. Across gradients in composition and thickness of 0 < x < 0.35 and 140–260 nm, respectively, in combinatorial thin films of Al1−xScxN, the pure wurtzite phase exhibits a similar c/a ratio regardless of the Sc content due to elastic interaction with neighboring crystals. The coercive field and spontaneous polarization significantly decrease with increasing Sc content despite this invariant c/a ratio. This property change is due to the more ionic bonding nature of Sc–N relative to the more covalent Al–N bonds, and the local displacement of the neighboring Al atoms caused by Sc substitution, according to DFT calculations. Based on these insights, ionicity engineering is introduced as an approach to reduce coercive field of Al1−xScxN for memory and other applications and to control ferroelectric properties in other wurtzites.

Graphical abstract: Local chemical origin of ferroelectric behavior in wurtzite nitrides

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2022
Accepted
12 Oct 2022
First published
12 Oct 2022
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2022,10, 17557-17566

Local chemical origin of ferroelectric behavior in wurtzite nitrides

K. Yazawa, J. S. Mangum, P. Gorai, G. L. Brennecka and A. Zakutayev, J. Mater. Chem. C, 2022, 10, 17557 DOI: 10.1039/D2TC02682A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements