Issue 36, 2022

Thermal stable zinc-based hybrid halides with high external quantum efficiency as temperature detectors

Abstract

Low-dimensional organic–inorganic metal halides with broad light emission have drawn widespread attention, however, the low thermal stability has been a major obstacle to their commercialization. Herein, zero-dimensional (C9H15N3)ZnCl4 with space group P21 was synthesized for the first time. (C9H15N3)ZnCl4 emits blue fluorescence at room temperature with external quantum efficiency as high as 42.5%, which are among the highest reported for Zn-based OIMHs, and it is comparable with the commercialized phosphors. Notably, the luminous integral intensity of (C9H15N3)ZnCl4 at 470 K remains more than 50% of that at room temperature. Mn2+ doping of (C9H15N3)ZnCl4 was conducted to improve the photoluminescence. With increasing Mn2+ concentration, the title compounds underwent fluorescence conversion from blue to green. The external quantum efficiencies of (C9H15N3)ZnCl4 : 5%Mn2+ and (C9H15N3)ZnCl4 : 50%Mn2+ were 43.7% and 42.9%, respectively. More importantly, (C9H15N3)ZnCl4 : 5%Mn2+ exhibited different luminous colors at different temperatures. As the temperature decreased from 290 to 110 K, the luminous color changed from green to light blue. Finally, a composite film was prepared to demonstrate the temperature response of this material, and the absolute sensitivity reaches 0.57%/K. These findings fill in the gaps for low-temperature indication and expand the application scenarios of OIMHs.

Graphical abstract: Thermal stable zinc-based hybrid halides with high external quantum efficiency as temperature detectors

Supplementary files

Article information

Article type
Paper
Submitted
06 Jul 2022
Accepted
15 Aug 2022
First published
30 Aug 2022

J. Mater. Chem. C, 2022,10, 13137-13142

Thermal stable zinc-based hybrid halides with high external quantum efficiency as temperature detectors

X. Zhang, Y. Xiong, K. Liu, N. Wang, L. Fan, W. Li, X. Zhao, J. Zhao and Q. Liu, J. Mater. Chem. C, 2022, 10, 13137 DOI: 10.1039/D2TC02838G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements