Issue 44, 2022

Exploring the optoelectronic properties of SnSe: a new insight

Abstract

Tin selenide has established its sound presence among 2D materials. A recent trend in the thermoelectric application study of this material has led to ignoring its optoelectronic potential. Here, we are unraveling its optoelectronics (viz., photodetector and solar cell) potential. Oxidation of the chalcogenides seems to be a boon for tin selenide for its optoelectronic properties. Tin selenide annealed at 300 °C in the open air for different times (0.5, 1, and 1.5 h) shows three consecutive layers (viz. SnSe, SnSe2, and SnO2). After the open-air annealing of SnSe, an enhanced photo-response in the broad spectrum is observed. A spectral response in the broad range of 250–1250 nm is observed compared to unannealed SnSe. Annealing time can tune the response in the required region, such as the ultraviolet and near-infrared regions. A maximum of 0.125 mA W−1 responsivity in the ultraviolet region (355 nm) for 1.5 h annealed and ∼0.117 mA W−1 for 0.5 h annealed in the near-infrared region has been observed. The layers formed are naturally in the form of basic solar cell structures. Experimentally the solar cell efficiency obtained after annealing indicates a new area of exploration for SnSe. A solar cell simulation study (by the simulation program SCAPS-1D) showed that efficiency is very sensitive to the electron affinity of the SnSe2 layer and could reach up to 20.28% under some defined conditions. This fabrication technique for the solar cell can substitute a clean room facility for the fabrication. The open-air annealing led to a better device in terms of responsivity, stability against environmental conditions, and natural formation of the solar cell. Also, this is the first ever reported device that can be uniquely formed just by open-air annealing. Optimizations in the parameters may open a new door in the fabrication technology of solar cells.

Graphical abstract: Exploring the optoelectronic properties of SnSe: a new insight

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2022
Accepted
27 Oct 2022
First published
28 Oct 2022

J. Mater. Chem. C, 2022,10, 16714-16722

Exploring the optoelectronic properties of SnSe: a new insight

M. Kumar, S. Rani, P. Vashishtha, G. Gupta, X. Wang and V. N. Singh, J. Mater. Chem. C, 2022, 10, 16714 DOI: 10.1039/D2TC03799H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements