Issue 20, 2023

An ultrasensitive photo-driven self-powered aptasensor for microcystin-RR assay based on ZnIn2S4/Ti3C2 MXenes integrated with a matching capacitor for multiple signal amplification

Abstract

A photo-driven self-powered aptasensor was constructed based on a matching capacitor and the ZnIn2S4/Ti3C2 heterojunction as the photoanode and Cu2O as the photocathode in a dual-photoelectrode sensing matrix for multiple signal amplification for the ultrasensitive detection of microcystin-RR (MC-RR). The introduction of Ti3C2 MXene nanosheets on the photoanode surface can not only accelerate the transfer and separation of photoinduced electron/hole pairs, thus enhancing the output signal of the photo-driven self-powered system, but also provide a larger specific surface area for the immobilization of the bio-recognition unit aptamer. More importantly, for a portable and miniaturized device, a micro-workstation with the size of a universal serial bus (USB) disk and a novel short-circuit current access was proposed to capture the instantaneous output electrical signal for real-time data tracking. In such a way, a sensitivity of 2.7 mA pM−1 was achieved when the matching capacitor was integrated into the self-powered system, which was 22 times that without a capacitor. After the interaction between MC-RR and the corresponding aptamer, a ‘signal-off’ detection configuration was formed via the steric hindrance effect. Therefore, such a multiple signal amplification system realized the ultrasensitive and selective determination of MC-RR successfully. Under optimal conditions, the linear range of the self-powered aptasensor was 0.1 to 100 pM and the detection limit was 0.033 pM (S/N = 3). The aptasensor was applied to the detection of MC-RR in fish, exhibiting good reproducibility (≈3.88%), paving the way for detecting microcystins in real-life samples.

Graphical abstract: An ultrasensitive photo-driven self-powered aptasensor for microcystin-RR assay based on ZnIn2S4/Ti3C2 MXenes integrated with a matching capacitor for multiple signal amplification

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2023
Accepted
18 Aug 2023
First published
22 Aug 2023

Analyst, 2023,148, 5060-5069

An ultrasensitive photo-driven self-powered aptasensor for microcystin-RR assay based on ZnIn2S4/Ti3C2 MXenes integrated with a matching capacitor for multiple signal amplification

J. Sun, R. Zhu, X. Du, B. Zhang, M. Zheng, X. Ji and L. Geng, Analyst, 2023, 148, 5060 DOI: 10.1039/D3AN00914A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements