Issue 18, 2023

Triple ligation-based formation of a G-quadruplex for simultaneous detection of multiple miRNAs

Abstract

The simultaneous detection of multiple microRNAs (miRNA) is of great necessity but has not been extensively studied. This prompted our study, which involved the development of a triple ligation-based system for detecting three miRNAs at the same time. We designed a multi-ligation-padlock (MLP) probe that consists of three parts, each of which is complementary to two different miRNAs at the same time. In the presence of all three miRNAs, the probe becomes circularized, but in the absence of even one target, the probe remains linear. The first part of the MLP probe (MLP1) contains a T7 promoter part that can initiate RNA synthesis for any given target condition. However, it also includes a G-quadruplex complementary segment, which can only form a parallel RNA G-quadruplex through rolling circle transcription by the circularized template in the presence of all three targets. In this case, the application of our parallel G-quadruplex sensing fluorescent probe lutidine DESA (LutD) produces a strong signal. However, in the absence of any one of the targets, the RNA G-quadruplex cannot be formed and ultimately the LutD probe does not generate any signal. This difference in the signal intensity represents the presence or absence of all the target miRNAs. With our system, we were able to detect miRNA 21 at levels as low as 1.13 fM, miRNA 146a as low as 1.37 fM, and miRNA 25b as low as 1.51 fM within 45 minutes, confirming that our novel system can selectively and sensitively diagnose triple miRNAs.

Graphical abstract: Triple ligation-based formation of a G-quadruplex for simultaneous detection of multiple miRNAs

Supplementary files

Article information

Article type
Communication
Submitted
01 Jul 2023
Accepted
13 Aug 2023
First published
15 Aug 2023

Analyst, 2023,148, 4283-4290

Triple ligation-based formation of a G-quadruplex for simultaneous detection of multiple miRNAs

K. M. Alom and Y. J. Seo, Analyst, 2023, 148, 4283 DOI: 10.1039/D3AN01103H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements