Regulated synthesis of an Au NB-DT@Ag bimetallic core-molecule–shell nanostructure for reliable SERS detection†
Abstract
In recent research, anisotropic plasmonic core–shell nanomaterials have gained a lot of attention in surface-enhanced Raman scattering (SERS) due to their brilliant uniformity and optical properties. Herein, a bimetallic core-molecule–shell (CMS) composite nanorod SERS substrate nanomaterial (Au NB-DT@Ag NRs) was designed and synthesized under precise regulation. The inner core is gold nanobipyramids (Au NBs), which possess superior plasmonic properties. Uniform Au NBs of five different sizes were fabricated via a penta-twinned gold seed mediated growth method. The length varied from 160 to 62 nm and the corresponding diameter varied from 60 to 23 nm while the longitudinal surface plasmonic resonance (SPR) changed from 908 to 715 nm. The SERS activity of five Au NBs were compared and the optimally sized one with a length of 78 nm and width of 28 nm was set as the inner core. After modification with the Raman reporter (DT), different amounts of silver were deposited on the surface of Au NB-DTs to form an Au NB-DT@Ag nanocomposite. The shape of the nanostructure gradually became a rod and lengthened while the longitudinal SPR wavelength varied from 733 nm to 664 nm with an increase in the amount of silver nitrate added. The Au NB-DT@Ag NRs with the best SERS activity (b-3) could realize the quantitative detection of the toxic dyes malachite green (MG) and crystal violet (CV) of concentrations as low as 5 × 10−9 M, showing good reproducibility and stability. This work offers a new design strategy for a SERS substrate for reliable quantitative SERS detection applications.