Issue 44, 2023

Development and application of a universal extraction-free reagent based on an algal glycolipid

Abstract

In this study, we independently developed a universal nasopharyngeal swab extraction-free reagent based on a trehalose lipid for the rapid detection of pathogen nucleic acids in respiratory infectious diseases. By comparing the isothermal amplification results of a 2019-nCoV pseudovirus solution treated with different components of the extraction-free reagent, we determined the optimal composition of the extraction-free reagent to be a mixed solution of 10 mmol L−1 tris–HCl containing 0.05 mmol L−1 EDTA (TE solution), 5% glycine betaine, 0.5% Triton X-100, and 1.5% trehalose lipid. The results showed that the extraction-free reagent could cleave DNA viruses, RNA viruses, and bacteria to release nucleic acids and did not affect the subsequent nucleic acid amplification. Its efficiency was consistent with that of magnetic bead extraction. Real-time fluorescence quantitative PCR was used to analyze the stability and repeatability of the detection results of the samples treated with the extraction-free reagent and the sensitivity of the extraction-free reagent. The results showed that the extraction-free kit could stably store the pathogen nucleic acid for at least 24 hours, the detection repeatability was satisfactory, and there was no incompatibility with the detection limits of various manufacturers' nucleic acid detection reagents. In conclusion, the established nucleic acid extraction-free method can effectively lyse respiratory infectious disease pathogens to release nucleic acids (DNA and RNA) at room temperature and can directly amplify nucleic acids without extraction steps. This method takes a short time and has high efficiency. The released nucleic acid met the requirements of molecular biological detection methods such as real-time fluorescence quantitative PCR (qPCR), reverse transcription-polymerase chain reaction (RT-PCR), and isothermal nucleic acid amplification (INAA).

Graphical abstract: Development and application of a universal extraction-free reagent based on an algal glycolipid

Article information

Article type
Paper
Submitted
20 Jul 2023
Accepted
12 Oct 2023
First published
03 Nov 2023

Anal. Methods, 2023,15, 6061-6072

Development and application of a universal extraction-free reagent based on an algal glycolipid

Q. Liu, N. Wang, M. Qiu, J. Cheng, H. Zhou, F. Che, Y. Hu, Y. He, Y. Dai and Y. Zhang, Anal. Methods, 2023, 15, 6061 DOI: 10.1039/D3AY01246H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements