Issue 2, 2023

Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics

Abstract

Phototheranostics that integrate diagnosis and treatment modalities have shown great promise in personalized cancer therapy. However, the “always on” characteristics often lead to suboptimal imaging quality and severe side effects. Herein, we report the construction of a perylenemonoimide based nanodrug CPMI NP with multi-functional activatable theranostic capability. The nanodrug is facilely co-assembled from a prodrug CPMI and DSPE-mPEG2000. In a tumor microenvironment (TME) with excessive glutathione (GSH), CPMI undergoes a cascade reaction to generate the phototheranostic molecule NPMI and the chemodrug chlorambucil, simultaneously switching on the near-infrared (NIR) fluorescence, photothermal effect, and drug release. The photothermal conversion efficiency is as high as 52.2%. Moreover, NPMI exhibits an enhanced intermolecular π–π stacking effect, leading to significant size-enlargement of the nanodrug and prolonged tumor retention. Due to TME-activation, the strong in vivo fluorescence signal of the tumor can be observed 144 h post injection with a high signal-to-noise ratio of up to 17. The enhanced tumor inhibition efficiency of the nanodrug is confirmed through activatable chemo-photothermal therapy. This work paves the way for the design of activatable phototheranostic agents for accurate cancer diagnosis and treatment.

Graphical abstract: Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics

Supplementary files

Article information

Article type
Paper
Submitted
03 Oct 2022
Accepted
17 Nov 2022
First published
22 Nov 2022

Biomater. Sci., 2023,11, 472-480

Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics

H. Chen, B. Zhou, X. Zheng, J. Wei, C. Ji and M. Yin, Biomater. Sci., 2023, 11, 472 DOI: 10.1039/D2BM01604D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements