Issue 16, 2023

Tumor acidity-induced surface charge modulation in covalent nanonetworks for activated cellular uptake: targeted delivery of anticancer drugs and selective cancer cell death

Abstract

A β-thioester and tertiary amine based covalently cross-linked nanoassembly coined as a nanonetwork (NN) endowed with dual pH responsive features (tumor acidity induced surface charge modulation and endosomal pH triggered controlled degradation) has been designed and synthesized for stable sequestration and sustained release of drug molecules in response to endosomal pH. An amphiphile integrated with tertiary amine and acrylate (ATA) functionalities was synthesized to fabricate the nanonetwork. This amphiphile showed entropically driven self-assembly and micellar nanostructures (nanoassemblies), which can sequester hydrophobic drug molecules at neutral pH. To further stabilize the nanoassemblies and the sequestered drug molecules even below its critical aggregation concentration (CAC), the micellar core was cross-linked via the thiol-acrylate Michael addition click reaction to generate multiple copies of acid labile β-thioester functionalities in the core, which undergo slow hydrolysis at endosomal pH (∼5.0), thus enabling sustained release of the anti-cancer drug doxorubicin at endosomal pH. The nanonetworks showed a significant decrease in drug leakage compared to the nanoassemblies (NAs), which was also justified by a low leakage coefficient calculated from the fluorescence resonance energy transfer experiment. The NN also exhibited dilution insensitivity and high serum stability, whereas the NA disassembled upon dilution and during serum treatment. The biological evaluation revealed tumor extracellular matrix pH (∼6.4–6.8) induced surface charge modulation and cancer cell (HeLa) selective activated cellular uptake of the doxorubicin loaded nanonetwork (NN-DOX). In contrast, the benign nature of NN-DOX towards normal cells (H9c2) suggests excellent cell specificity. Thus, we believe that the ease of synthesis, nanonetwork fabrication reproducibility, robust stability, smart nature of tumor microenvironment sensitive surface charge modulation, boosted tumoral-cell uptake, and triggered drug release will make this system a potential nanomedicine for chemotherapeutic treatments.

Graphical abstract: Tumor acidity-induced surface charge modulation in covalent nanonetworks for activated cellular uptake: targeted delivery of anticancer drugs and selective cancer cell death

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2023
Accepted
19 Jun 2023
First published
20 Jun 2023

Biomater. Sci., 2023,11, 5549-5559

Tumor acidity-induced surface charge modulation in covalent nanonetworks for activated cellular uptake: targeted delivery of anticancer drugs and selective cancer cell death

S. Santra, S. Das, A. Sengupta and M. R. Molla, Biomater. Sci., 2023, 11, 5549 DOI: 10.1039/D3BM00491K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements