Construction of self-propelled micromotor for “hunting bacteria”†
Abstract
The inherent migration behavior of bacteria has inevitably impacted the advancement of the antibacterial treatment technology. Hunting bacteria, especially those with flagellates, requires self-propelled materials, which could kill bacteria autonomously. Herein, we designed and synthesized a self-propelled micromotor (SPM) tailed with poly(thiazole) to yield bimetallic organic frameworks (BiOFs), in which the assembly of BiOFs are similar to the “Newman projection”. The moving speed of the obtained SPM was 238.6 μm s−1 and presented excellent antibacterial activity; more than 90% bacteria were hunted and killed in flowing water. Its minimum inhibitory concentration (MIC) against E. coli and S. aureus was 3.2 and 0.4 mg mL−1, respectively, and its antibacterial activity was still retained after recycling for 5 times. Its antibacterial mechanism along with the contribution of the active units and flow rate was investigated. In summary, a novel self-propelled material for hunting bacteria was synthesized by an unprecedented and efficient strategy. This approach is anticipated to create huge possibilities for its applications in the fields of antibacterial, disinfection, and microdevices.