Ultrahigh-resolution quantum dot patterning for advanced optoelectronic devices
Abstract
Quantum dots have attracted significant scientific interest owing to their optoelectronic properties, which are distinct from their bulk counterparts. In order to fully utilize quantum dots for next generation devices with advanced functionalities, it is important to fabricate quantum dot colloids into dry patterns with desired feature sizes and shapes with respect to target applications. In this review, recent progress in ultrahigh-resolution quantum dot patterning technologies will be discussed, with emphasis on the characteristic advantages as well as the limitations of diverse technologies. This will provide guidelines for selecting suitable tools to handle quantum dot colloids throughout the fabrication of quantum dot based solid-state devices. Additionally, epitaxially fabricated single-particle level quantum dot arrays are discussed. These are extreme in terms of pattern resolution, and expand the potential application of quantum dots to quantum information processing.