Issue 14, 2023

Engineering solid nanochannels with macrocyclic host–guest chemistry for stimuli responses and molecular separations

Abstract

Biological channels in the cell membrane play a critical role in the regulation of signal transduction and transmembrane transport. Researchers have been committed to building biomimetic nanochannels to imitate the above significant biological processes. Unlike the fragile feature of biological channels, numerous solid nanochannels have aroused extensive interests for their controllable chemical properties on the surface and superior mechanical properties. Surface functionalization has been confirmed to be vital to determine the properties of solid nanochannels. Macrocyclic hosts (e.g., the crown ethers, cyclodextrins, calix[n]arenes, cucurbit[n]urils, pillar[n]arenes, and trianglamine) can be tailored to the interior surface of the nanochannels with the performance of stimuli response and separation. Macrocycles have good reversibility and high selectivity toward specific ions or molecules, promoting functionalies of solid nanochannels. Hence, the combination of macrocyclic hosts and solid nanochannels is conducive to taking both advantages and achieving applications in functional nanochannels (e.g., membranes separations, biosensors, and smart devices). In this review, the most recent advances in nanochannel membranes decorated by macrocyclic host–guest chemistry are briefed. A variety of macrocyclic hosts-based responsive nanochannels are organized (e.g., the physical stimuli and specific molecules or ions stimuli) and nanochannels are separated (e.g., water purifications, enantimerseparations, and organic solvent nanofiltration), respectively. Hopefully, this review can enlighten on how to effectively build functional nanochannels and facilitate their practical applications in membrane separations.

Graphical abstract: Engineering solid nanochannels with macrocyclic host–guest chemistry for stimuli responses and molecular separations

Article information

Article type
Feature Article
Submitted
02 Dec 2022
Accepted
09 Jan 2023
First published
10 Jan 2023

Chem. Commun., 2023,59, 1907-1916

Engineering solid nanochannels with macrocyclic host–guest chemistry for stimuli responses and molecular separations

Z. Chen, Q. He, X. Deng, J. Peng, K. Du and Y. Sun, Chem. Commun., 2023, 59, 1907 DOI: 10.1039/D2CC06562B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements