Dissimilar chemobrionic growth in copper silicate chemical gardens in the absence or presence of light†
Abstract
The effect of the absence of light on chemical garden growth has been neglected although the gardens resemble hydrothermal vents that grow in dark in the sea/ocean. Herein, we report the differential growth of chemobrionic structures in copper silicate when identical reactions to yield copper silicate chemical gardens were carried out in the presence or absence of light. Irradiating the copper silicate chemical garden during its growth with different wavelengths of light independently resulted in morphologically divergent tubes.