Issue 2, 2023

The formation and stability of fluoxetine HCl cocrystals investigated by multicomponent milling

Abstract

Competitive milling (CM) and stability milling (SM) mechanochemical reactions are used to comprehensively assess the relative thermodynamic stabilities and cocrystallization affinities of three pharmaceutical cocrystals (PCCs) of fluoxetine HCl (X) with three different pharmaceutically acceptable coformers (PACs, i.e., benzoic acid (B), fumaric acid (F), and succinic acid (S)). CM reactions, which involve milling X in the presence of two or more different PACs, were used to determine cocrystallization affinities, whereas SM reactions, which involve milling a PCC of X with a different coformer, were used to determine relative thermodynamic stabilities. In certain cases, SM reactions exhibited a remarkable solid-state exchange of coformers, yielding new cocrystalline forms. 35Cl (spin I = 3/2) SSNMR is used as the primary probe of the products of CM and SM reactions, providing a reliable means of identifying and quantifying chloride ions in unique hydrogen bonding environments in each reaction mixture (13C SSNMR spectra and pXRD patterns are used in support of these data). On the basis of these reactions and data, the PAC cocrystallization affinities with X are B > FS (most to least preferred), and the PCC stabilities are XB > X2FX2S (most to least preferred), corresponding to enthalpies of cocrystallization ranked as ΔHCCXB < Image ID:d2ce01341j-t1.gifImage ID:d2ce01341j-t2.gif. PAC affinities and PCC stabilities were found to be the same for products of analogous slow evaporation experiments and mechanochemical reactions with extended milling times (i.e., 90 minutes). Preliminary plane-wave DFT-D2* calculations are supportive of cocrystal formation; however, challenges remain for the quantification of relative enthalpies of cocrystallization. This work demonstrates the great potential of CM and SM reactions for providing pathways to the rational design, discovery, and manufacture of new cocrystalline forms of APIs.

Graphical abstract: The formation and stability of fluoxetine HCl cocrystals investigated by multicomponent milling

Supplementary files

Article information

Article type
Paper
Submitted
28 Sep 2022
Accepted
24 Nov 2022
First published
28 Nov 2022

CrystEngComm, 2023,25, 213-224

Author version available

The formation and stability of fluoxetine HCl cocrystals investigated by multicomponent milling

A. A. Peach, S. T. Holmes, L. R. MacGillivray and R. W. Schurko, CrystEngComm, 2023, 25, 213 DOI: 10.1039/D2CE01341J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements