Issue 20, 2023

New pyrimidine-amide-tetrazole ligand derived polyoxometalate-based copper complexes as catalysts for sulfide-sulfoxide transformation and electrochemical sensors

Abstract

In this study, a new ligand, 5-(4-pyrimidinecarboxamido)-1H-tetrazol (4-H2pat), was synthesized by connecting the pyrimidine group and tetrazole group through an amide bond for the first time, aiming to construct new POM-based metal–organic complexes (POMOCs). By using the ligand 4-H2pat, two new POMOCs, [Cu4(4-pat)22-OH)(CrMo6(OH)6O18)(H2O)3]·2H2O (1) and [Cu2(4-pat)(β-Mo8O26)0.5(H2O)3] (2), were successfully synthesized under solvothermal and hydrothermal conditions, respectively. The structures were characterized by single crystal X-ray diffraction analysis, IR spectroscopy and powder X-ray diffraction (PXRD). In complex 1, the 1D [Cu42-OH)(4-pat)2]n3n+ metal–organic chains were connected by μ2-bridging [CrMo6(OH)6O18]3− (CrMo6) anions to construct a 2D layered structure. In complex 2, the 2D [Cu2(4-pat)]n2n+ metal–organic grid framework was consolidated by the μ4-bridging [β-Mo8O26]4− (Mo8) anions. The use of two different POM anion clusters results in the formation of two diverse 2D framework structures. Complexes 1 and 2 can effectively catalyze the oxidation of methyl phenyl sulfide as non-homogeneous catalysts with 97% and 95% conversions, respectively. They can also be used as electrocatalysts to prepare bulk-modified electrodes for detecting Cr(VI) and Fe(III) ions with low detection limits. In addition, the effects of different POMs on the structures and catalytic/electrocatalytic performances of the title complexes were discussed.

Graphical abstract: New pyrimidine-amide-tetrazole ligand derived polyoxometalate-based copper complexes as catalysts for sulfide-sulfoxide transformation and electrochemical sensors

Supplementary files

Article information

Article type
Paper
Submitted
18 Mar 2023
Accepted
18 Apr 2023
First published
19 Apr 2023

CrystEngComm, 2023,25, 3025-3032

New pyrimidine-amide-tetrazole ligand derived polyoxometalate-based copper complexes as catalysts for sulfide-sulfoxide transformation and electrochemical sensors

J. Lu, H. Lin, Q. Liu, X. Liu and X. Wang, CrystEngComm, 2023, 25, 3025 DOI: 10.1039/D3CE00269A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements