Issue 44, 2023

Retarding crystal transitions of polybutene-1 in blends

Abstract

In this study, copolymers of 1-butene with allyltrimethylsilane (TMAS) were synthesized via rac-ethylenebis(indenyl)zirconium chloride (rac-Et(Ind)2ZrCl2)/methylaluminoxane (MAO) catalyst. Combining 1H-NMR and Fourier transform infrared (FT-IR) spectroscopies, the microstructure of the copolymer was verified and the insertion rate of TMAS was calculated. Herein, we demonstrate that the isotacticity and thermal decomposition temperature of the copolymers decreased with the contents of allyltrimethylsilane in the copolymers. After blending the resultant copolymers with high isotactic poly(1-butene) powder (HI-PB), it was found that the 1-butene-allyltrimethylsilane copolymer (PB-TMAS) reduced the crystallization temperature, inhibited the formation of form I in the amorphous region at the initial stage of crystal transformation, and slowed down the crystalline transformation from form II to form I, but did not affect the time of the initial reduction of form II.

Graphical abstract: Retarding crystal transitions of polybutene-1 in blends

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2023
Accepted
10 Oct 2023
First published
13 Oct 2023

CrystEngComm, 2023,25, 6144-6151

Retarding crystal transitions of polybutene-1 in blends

Z. Cui, C. Li, B. Liu and S. Jiang, CrystEngComm, 2023, 25, 6144 DOI: 10.1039/D3CE00584D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements