Linker size dependent mechanical properties of di-imine based molecular crystals†
Abstract
Mechanically flexible molecular crystals have emerged as a fascinating class of materials with the ability to undergo substantial deformation without compromising their structural integrity. We report here four 3,5-di-tert-butyl salicylaldehyde based di-imine crystals. Crystals 1 and 2 were plastic while crystals 3 and 4 were brittle and elastic, respectively. By changing the length of the intervening linker molecule, structure and packing factors were influenced greatly resulting in the final outcome of mechanical properties. It is possible to fine-tune mechanical properties by changing the length of the linker moiety while keeping the peripheral shape synthons the same. These findings open up new avenues for tailoring the mechanical flexibility of molecular crystals, opening up opportunities for their application in various fields.